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Abstract

Wave reflection and transmission in composite beams containing a semi-infinite delamination is studied analytically

based on Timoshenko beam theory. Two extreme cases of delaminated surface conditions: non-contact (open) and fully

contact (closed) delaminations, are examined, respectively, for a unidirectional composite beam. Analytical solutions of

reflection and transmission coefficients for time harmonic flexural waves in a semi-infinite delaminated beam are obtained.

The portion of reflected and transmitted power (energy) depends strongly on the frequency of the incident flexural waves as

well as the delamination position. The power reflection and transmission ratios are also calculated and verified through

energy conservation. The transmitted energy among various wave modes is also investigated. The interaction of

narrowband incident wave with delamination at different positions through the thickness of a composite beam is then

studied by analytical analysis and verified by finite element analysis.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

One of the commonly encountered defects or damages in laminated composite structures is delamination.
The delamination not only causes reduction in stiffness, but also affects the strength and integrity of the
structure, leading to its final failure. The delamination also affects its vibration and stability characteristics of
laminated beam type structures. Vibration characteristics of beams containing delamination or inhomogeneity
have been investigated analytically and experimentally [1–4]. The vibration characteristics of the delaminated
beam, such as natural frequencies and mode shapes, have been examined. As expected, using this passive
diagnosis method the change of these modal parameters is insensitive to the extent of the damage for the first
few natural frequencies. An active diagnosis method by exciting controlled waves into the structure is used to
detect the localized damage. When the incident wave propagates in the beam containing delamination [3,4],
the interaction of the incident wave with the delamination induces scattered waves. The scattered waves in the
form of reflected and transmitted waves may carry information on the nature of the damage. The guided
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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waves in beams are characterized by their multimodal and dispersive nature. When the guided waves are
incident on the discontinuities, mode conversion may occur as a result of satisfying the boundary conditions
along the discontinuities. Since such waveguide induces stresses through the beam thickness, the entire
thickness of the beam is interrogated, which means that it is possible to determine the depth of the
delamination.

Flexural wave propagation in the delaminated beam has also been investigated [5–9], but to a lesser extent.
The delamination splits the portion of the beam into two delaminated sub-beams. The transmitted flexural
wave velocity in the delaminated region is decreased due to the reduction of overall bending stiffness.
Ostachowicz et al. [9] modeled a finite delaminated isotropic beam by spectral finite elements. Additional wave
packets shown in acceleration response are induced due to wave reflection from the delamination. However,
they did not consider the interaction between the two delaminated sub-beams. None of the studies considered
the power transport of transient wave packets, which can be useful for damage identification. Power flow in
beam-like structures can be obtained from both theory and experiments [10,11]. To our best knowledge, no
relationship between the incident wave and the reflected or transmitted waves has been presented. Bazer and
Burridge [12] derived a general solution of power flow of plane waves at an interface in a three-dimensional
medium. They are concerned with the energy balance associated with the reflection and refraction of harmonic
plane waves governed by the differential equations at a plane interface or boundary. The power flow in
the incident wave is equal to the sum of that in the reflected and refraction waves, which indicates the
power conservation. Wang and Rose [13] investigated the wave propagation in isotropic beams
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Fig. 1. Reflection and transmission of an incident wave in beams containing semi-infinite delamination: (a) open delamination and

(b) closed delamination.
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containing semi-infinite delamination. Only the closed delamination is considered and the results of
symmetric delamination are given in comparison with the closed delamination modeled by equivalent
inhomogeneity.

The purpose of this paper is to present an analytical method for analyzing the wave behavior of the
delaminated beam and for determining the (power) reflection from and transmission through a semi-infinite
delaminated composite beam. The composite beam is modeled using Timoshenko beam theory. Upon wave
incidence on the beam the waveguide propagates toward the delamination, then splits into two waveguides in
the delaminated sub-beams, each with its own higher cut-off frequency. The crack surfaces may experience
partially closed or open in a time-varying manner. To analytically model the delamination region, two extreme
cases signifying the extreme cases of delaminated surface condition during the wave propagation are
considered. One is that the delamination surfaces are completely open. It means there is no contact between
two sub-beams. The transmitted waves in sub-beams are independent of each other; while the other assumed
that the delaminated surfaces are completely closed, that has been discussed in Ref. [13], the surfaces are in
contact. These two cases are shown in Fig. 1(a) and (b), respectively. The two cases are described as open and
closed delaminations herein.

The paper is organized as follows. Dispersion relation, phase and group velocities of Timoshenko beams are
analyzed in Section 2. The reflection and transmission coefficients for the open and closed delaminations are
derived, respectively, in Section 3. In Section 4 the power reflection and transmission and power distribution
among transmitted wave modes are analyzed. Numerical results are conducted in Section 5. Comparison of
results from analytical solutions and finite element method is made in Section 6. Finally conclusions are drawn
in Section 7.
2. Dispersion relations of Timoshenko beams

Based on Timoshenko beam theory, the general displacements of the composite beam can be described as

Uðx; z; tÞ ¼ uðx; tÞ þ zcðx; tÞ; V ðx; z; tÞ ¼ 0; W ðx; z; tÞ ¼ wðx; tÞ, (1)

where x-axis is the centroidal axis of the (sub-) beam. u(x,t) is the axial displacement of the beam in the
x-direction. c(x, t) is the rotation of the cross-section of the beam about the y-axis; w(x,t) is the transverse
displacement of the beam in the z-direction. The non-vanishing strain components provided by Eq. (1) are

�x ¼ u;x þ zc;x; gxz ¼ w;x þ c. (2)

The equilibrium equations for a symmetric laminated beam [14] can be written as

N;x ¼ I1 €u; V ;x ¼ I1 €w; M ;x � V ¼ I2 €c, (3)

where

N ¼

Z h=2

�h=2
sx dz; V ¼

Z h=2

�h=2
txz dz; M ¼

Z h=2

�h=2
sxzdz. (4)

N, V, and M are the axial force, shear force, and bending moment per unit beam width of the composite
beam; sx and txz are the axial and shear stresses, respectively, h is the thickness of the beam

I1 ¼

Z h=2

�h=2
rdz and I2 ¼

Z h=2

�h=2
rz2 dz (5)

are the translational and rotational inertia per unit beam width, respectively, and r is the mass density of the
laminated beam.
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For the composite beam, the stiffness of an off-axis composite can be written in the following form [14]:

C ¼

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

2
6666666664

3
7777777775
. (6)

Since the transverse shear strain is taken as a constant through the beam thickness, a shear adjustment
coefficient k is introduced such that transverse shear force would be equal to the actual shear force in
magnitude. Considering the plane strain in the y-direction (i.e., second equation of Eq. (1)), the constitutive
relations between stress and strain can be simplified as

sx ¼ C11�x; txz ¼ k2C55gxz, (7)

where k2 ¼ p2/12 is the transverse shear correction factor which is determined by the match of the cut-off
frequency of the beam theory with that obtained from the Rayleigh–Lamb equation [15]. If the plane stress
condition is imposed in the beam, the coefficients of Eq. (7) are replaced by ~C11 ¼ C11 � C2

12=C22,
~C55 ¼ C55 � C2

45=C44.
Then the axis force, bending moment, and shear force can be written using Eqs. (4) and (7) by

N ¼ A11u;x; M ¼ D11c;x; V ¼ k2A55ðw;x þ cÞ, (8)

where the extensional, shear, and bending stiffnesses are defined by [14]

A11 ¼

Z h=2

�h=2
C11 dz; A55 ¼

Z h=2

�h=2
C55 dz; D11 ¼

Z h=2

�h=2
C11z2 dz. (9)

The equilibrium equation given by Eq. (3) can be expressed in terms of displacements as

A11u;xx ¼ I1 €u, (10a)

k2A55ðw;xx þ c;xÞ ¼ I1 €w, (10b)

D11c;xx � k2A55ðw;x þ cÞ ¼ I2 €c. (10c)

For plane wave solutions the displacements in one-dimensional beam are represented by

u ¼ U0 e
iðkx�otÞ; w ¼W 0 e

iðkx�otÞ; c ¼ C0 e
iðkx�otÞ. (11)

The dispersion relation of flexural waves can be expressed via Eqs. (10b) and (10c) as follows:

ðk2A55k2
� I1o2ÞðD11k2

þ k2A55 � I2o2Þ � k4A2
55k2
¼ 0. (12)

There are four roots of Eq. (12):

kj ¼
1

2
1þ

c2l
k2c2s

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cl

qo

� �2

þ
1

4
1�

c2l
k2c2s

� �2
s2

4
3
5
1=2

o
cl

(13)

for (j ¼ 1,2) and noting k3 ¼ �k1, k4 ¼ �k2,
In Eq. (13) cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A55=I1

p
and cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11=I2

p
are shear and plate wave velocities, respectively. For a

unidirectional composite beam with rectangular cross-section, these velocities are independent of beam
thickness and q ¼

ffiffiffiffiffiffiffiffiffiffiffi
I2=I1

p
¼ h=

ffiffiffiffiffi
12
p

.
Using the following non-dimensional variables,

x ¼ x=h; w ¼ w=h,

t ¼ t=t; k ¼ kh; o ¼ ot, (14)
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where the reference length scale is the thickness of the (sub-)beam h and a typical time scale t ¼ h/cs, the
resulting non-dimensional dispersion relation is

kj ¼
ðaþ k2Þ
2ak2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

ao2
þ

1

4

1

a
�

1

k2

� �2
s2

4
3
5
1=2

o ðj ¼ 1; 2Þ; k3 ¼ �k1; k4 ¼ �k2, (15)

where a ¼ (cl/cs)
2.

The cut-off frequency of the A1 mode can be simply determined by setting k2 ¼ 0 in Eq. (13), which gives

oc ¼ kcs=q. (16)

Phase velocities and group velocities are given by

cp ¼ o=k; cg ¼ do=dk. (17)

When frequencies approach infinity, the wave velocity becomes non-dispersive. According to Eqs. (13) and
(17), the phase and group velocities of two flexural modes can be simply derived

cg0 ¼ kcs; cg1 ¼ cl as o!1.

Clearly these two group velocities do not depend on the thickness of the beam.
In the relatively low frequency range, oooc, the Timoshenko beam experiences a pair of propagating waves

(one positive-going and one negative-going) plus two evanescent (near-field) waves, the value of k being purely
imaginary. The pair of propagating waves is called the lowest fundamental flexural A0 wave modes. These two
near-field waves can be regarded as positive- and negative-going attenuating waves which decay exponentially
with the wave travel distance. Beyond the cut-off frequency oc, two pairs of propagating waves (two positive-
going and two negative-going) co-exist, called A0 and A1 modes. Thus, with an increase of frequency, a non-
propagating mode can decay more slowly and eventually becomes a propagating mode.

A general solution of Eq. (10b) and Eq. (10c) is given by

wðx; tÞ ¼
X4
j¼1

aj e
iðkjx�otÞ; cðx; tÞ ¼

X4
j¼1

Fjaj e
iðkjx�otÞ, (18)

where F j ¼ i½ðo=kcsÞ
2
� k2

j �=kj ðj ¼ 1; 2Þ, F3 ¼ �F1 and F4 ¼ �F2. The amplitudes aj may be complex.
For the extensional wave mode governed by Eq. (10a), there exists a pair of propagating waves (one

positive-going and negative-going). The wave is non-dispersive based on the Timoshenko beam theory whose
dispersion relation is given by

ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=A11

p
o. (19)

3. Reflection and transmission matrices

When a propagating time harmonic wave is incident upon a discontinuity, it is scattered into waves reflected
from and transmitted through the discontinuity whose magnitudes and phases can be quantified by reflection
and transmission matrices. The total wave field can be expressed as a sum of the incident wave field and the
scattered wave field. The mode incident on the delamination results in both reflected and transmitted waves of
all orders of the wave modes that could exist in the beam for a given frequency. It is assumed that far away
from the discontinuity the reflected and transmitted waves are plane waves. The incident time harmonic wave
induces not only propagating waves (real wavenumber) and non-propagating evanescent near-field waves
(purely imaginary wavenumber). In this section, a propagating flexural wave at far-field excited on
a unidirectional composite beam incident upon a semi-infinite delamination is studied. The far field is
defined here as the distance where the contribution of non-propagating wave can be neglected. Two extreme
cases of delaminated surface conditions: non-contact (open) and fully contact (closed) delaminations, are
considered, respectively. The reflection and transmission matrices of both open and closed delaminations are
derived separately.
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3.1. Open delamination

Consider a slender beam containing a semi-infinite delamination shown in Fig. 1(a), the origin of the
coordinate is located at the tip of the delamination. The beam can be divided into two regions. The left region
is the un-delaminated region which contains both incident and reflected waves; while the right region
encompasses the two delaminated sub-beams. Since the delamination surfaces are open, there is no contact
pressure between the surfaces. Only positive-going wave exists in the two sub-beams, which refers to the
transmitted wave.

Considering an incident flexural wave traveling in the positive x-direction, in the left un-delaminated
region (xp0) when the excitation frequency is greater than the cut-off frequency, the wave fields consist
of two positive-going incident flexural waves and two negative-going reflected flexural waves that can be
written as

w0 ¼ a eik1x þ b eik2x þ ar e
�ik1x þ br e

�ik2x, (20a)

c0 ¼ F1a eik1x þ F2b eik2x � F1ar e
�ik1x � F2br e

�ik2x. (20b)

Due to the moment continuity on the junction, an induced extensional wave may also be reflected from the
discontinuity and transmitted into two sub-beams. The negative-going reflected extensional wave in the left
region can be expressed as

u0 ¼ cr e
�ikex, (20c)

where the time dependence term e�iot has been suppressed here and hereafter. When the excitation frequency
is below the cut-off frequency, i.e., oooc, the second pair wave mode becomes evanescent since the
wavenumber k2 is purely imaginary. The choice of the sign in k2 is dictated by the condition that the reflected
wave field is finite as x-�N. In this case, the sign of k2 is deliberately chosen to be negative. The coefficients
of a and b represents the amplitude of incident wave depending on the details of the loading away from the
discontinuity. When excited at far field in the low frequency b can be set to zero. In the limit when frequency
approaches infinity, the group velocities of the two modes are given by Eq. (17).

In the right delaminated region (xX0) where the crack surfaces are completely open, the displace-
ments of the two independent sub-beams are denoted by u1, w1, c1, u2, w2, c2. The subscripts 1 and 2
denote the upper and lower sub-beams, respectively. Since waves are transmitted from the incident waves
through the discontinuity, the general solutions of displacement for the transmitted waves in each sub-beam
are given by

wn ¼ a
ðnÞ
t eik

ðnÞ

1
x þ bðnÞt eik

ðnÞ

2
x, (21a)

cn ¼ F
ðnÞ
1 a
ðnÞ
t eik

ðnÞ

1
x þ F

ðnÞ
2 bðnÞt eik

ðnÞ

2
x ðn ¼ 1; 2Þ, (21b)

un ¼ c
ðnÞ
t eik

ðnÞ
e x, (21c)

where superscripts (1) and (2) denote the parameters associated with each sub-beam. The wavenumber kj
(n)

and Fj
(n)can be readily obtained by substituting the stiffness and moment of inertia pertaining to the each sub-

beam in Eqs. (4), (5) and (9). According to Eq. (19), the wavenumber of the extensional wave is independent of
beam thickness implying ke ¼ ke

(1)
¼ ke

(2).
The cut-off frequency of each sub-beam can be written as follows:

oð1Þc ¼ kcs=qð1Þ; oð2Þc ¼ kcs=qð2Þ, (22)

where qðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I
ðnÞ
2 =I

ðnÞ
1

q
(n ¼ 1,2).

The group velocities of two flexural wave modes in each sub-beam at infinite frequency, according to
Eq. (17), are

c
ðnÞd
g0 ¼ kcs; c

ðnÞd
g1 ¼ cl as o!1 ðn ¼ 1; 2Þ, (23)

where the superscript d denotes the delaminated beams.
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The amplitudes of these waves involving nine unknowns (ar, br, cr, at
(1), bt

(1), ct
(1), at

(2), bt
(2), ct

(2)) can be
determined from the following continuity and equilibrium conditions at the junction, x ¼ 0 as shown in Fig. 2

w0 ¼ w1 ¼ w2; c0 ¼ c1 ¼ c2; u1 ¼ u0 þ
h2

2
c0; u2 ¼ u0 �

h1

2
c0,

N0 ¼ N1 þN2; M0 ¼M1 þM2 þ
h2

2
N1 �

h1

2
N2; V0 ¼ V1 þ V 2. (24)

Substituting Eqs. (20) and (21) together with Eq. (8) into Eq. (24) leads to the following matrix form:

�1 �1 0 1 1 0 0 0 0

�1 �1 0 0 0 0 1 1 0

F1 F 2 0 F
ð1Þ
1 F

ð1Þ
2 0 0 0 0

F1 F 2 0 0 0 0 F
ð2Þ
1 F

ð2Þ
2 0

F1h2 F 2h2 �2 0 0 2 0 0 0

F1h1 F 2h1 2 0 0 0 0 0 �2

0 0 h 0 0 h1 0 0 h2

�k1F 1 �k2F2 0 að1Þ1 að1Þ2 b að2Þ1 að2Þ2 �b

g1 g2 0 gð1Þ1 gð1Þ2 0 gð2Þ1 gð2Þ2 0

2
666666666666666664

3
777777777777777775

ar

br

cr

a
ð1Þ
t

bð1Þt

c
ð1Þ
t

a
ð2Þ
t

bð2Þt

c
ð2Þ
t

2
666666666666666664

3
777777777777777775

¼

1 1

1 1

F 1 F 2

F 1 F 2

F 1h2 F 2h2

F 1h1 F 2h1

0 0

k1F1 k2F2

g1 g2

2
66666666666666664

3
77777777777777775

a

b

� �
, (25)

where aðnÞm ¼ kðnÞm F ðnÞm ðhn=hÞ3, b ¼ 6(h1h2/h
3)ke, gm

(n)
¼ hn(ikm

(n)+Fm
(n)), m, n ¼ 1,2.

The coefficients of reflected and transmitted waves can be symbolically represented in terms of the
coefficients of the incident wave in the following relation:

½ar; br; cr�
T ¼ R3�2½a; b�

T, (26a)

½a
ð1Þ
t ; b

ð1Þ
t ; c

ð1Þ
t �

T ¼ T
ð1Þ
3�2½a; b�

T, (26b)

½a
ð2Þ
t ; b

ð2Þ
t ; c

ð2Þ
t �

T ¼ T
ð2Þ
3�2½a; b�

T, (26c)

where R3� 2, T
ð1Þ
3�2, and T

ð2Þ
3�2 denote reflection and the transmission matrices whose components are complex in

general. For example, in reflection matrix R3� 2 the component R12 means the second incident flexural wave
mode converts into the first reflected flexural mode from the discontinuity. Similarly, the transmitted mode
conversion also occurs. The extensional wave mode may be induced in the composite beam. This means the
flexural wave will partly transform to the extensional mode when the incident wave is reflected from the
delamination tip or transmitted into the delaminated region. The proportion of the extensional mode
conversion compared with the flexural mode conversion depends on the incident wave frequency and position
of the delamination in the thickness direction. This will be discussed in detail in Section 5.

3.2. Closed delamination

The displacements of the left un-delaminated region are the same as in the open delamination case.
Denoting the contact pressure between the two delaminated surfaces as p(x, t), as shown in Fig. 1(b), with the
identical transverse displacement, i.e., ŵ ¼ w1 ¼ w2, the following governing equations of flexural wave can be



ARTICLE IN PRESS
W.-C. Yuan et al. / Journal of Sound and Vibration 313 (2008) 676–695 683
derived:

k2Að1Þ55 ðŵ;xx þ c1;xÞ ¼ I
ð1Þ
1
€̂wþ p, (27a)

D
ð1Þ
11c1;xx � k2Að1Þ55 ðŵ;x þ c1Þ ¼ I

ð1Þ
2
€c1, (27b)

k2Að2Þ55 ðŵ;xx þ c2;xÞ ¼ I
ð2Þ
1
€̂w� p, (27c)

D
ð2Þ
11c2;xx � k2Að2Þ55 ðŵ;x þ c2Þ ¼ I

ð2Þ
2
€c2. (27d)

The contact pressure p can be eliminated by combining Eqs. (27a) and (27c), to obtain

k2ðA55ŵ;xx þ A
ð1Þ
55c1;x þ A

ð2Þ
55c2;xÞ ¼ I1 €̂w. (28)

If the displacements are introduced as

ŵ ¼ Ŵ eiðk̂x�otÞ; c1 ¼ C1 e
iðk̂x�otÞ; c2 ¼ C2 e

iðk̂x�otÞ. (29)

Then by substitution of Eq. (29) into Eqs. (28), (27b), and (27d), the dispersion relation can be determined
as follows:

det

k2A55k̂
2

�ik2Að1Þ55 k̂ �ik2Að2Þ55 k̂

ik2Að1Þ55 k̂ D
ð1Þ
11 k̂

2
þ k2A

ð1Þ
55 0

ik2Að2Þ55 k̂ 0 D
ð2Þ
11 k̂

2
þ k2A

ð2Þ
55

2
6664

3
7775� o2

I1 0 0

0 I
ð1Þ
2 0

0 0 I
ð2Þ
2

2
664

3
775

8>>><
>>>:

9>>>=
>>>;
¼ 0. (30)

The results give rise to three flexural wave modes. Loosely these modes can be related to the
fundamental flexural mode of the un-delaminated portion of the beam, A0

(0)d, and the other two
related to the A1 mode in the upper and lower sub-beams, A1

(1)d and A1
(2)d, respectively. Two cut-off

frequencies can be readily proved to be identical to those in the open delaminating case. When the frequencies
approach infinity, according to Eqs. (30) and (17), the group velocities of the three flexural modes can be
exactly derived

c
ð0Þd
g0 ¼ kcs; c

ð1Þd
g1 ¼ c

ð2Þd
g1 ¼ cl as o!1. (31)

The general solution of the positive-going transmitted flexural waves in the delaminated region can be
conveniently written as

ŵ ¼ at e
ik̂0x þ bð1Þt eik̂1x þ bð2Þt eik̂2x, (32a)

cn ¼ G
ðnÞ
0 at e

ik̂0x þ G
ðnÞ
1 bð1Þt eik̂1x þ G

ðnÞ
2 bð2Þt eik̂2x ðn ¼ 1; 2Þ, (32b)

where G
ðnÞ
j ¼ ðik̂j=½ðoqðnÞÞ=ðkcðnÞs Þ�

2 � ½qðnÞðk̂j=kÞðc
ðnÞ
l =cðnÞs Þ�

2 � 1Þ, (n ¼ 1,2 and j ¼ 0,1,2).
The extensional waves in the two sub-beams are the same as in the open delamination case. There are a total

of eight amplitudes (ar, br, cr, at, bt
(1), bt

(2), ct
(1), ct

(2)) which can be determined from the following continuity
and equilibrium conditions at x ¼ 0.

w0 ¼ ŵ; c0 ¼ c1 ¼ c2; u1 ¼ u0 þ
h2

2
c0; u2 ¼ u0 �

h1

2
c0,

N0 ¼ N1 þN2; M0 ¼M1 þM2 þ
h2

2
N1 �

h1

2
N2; V0 ¼ V 1 þ V2. (33)
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Substituting Eqs. (20) and (32) together with Eq. (8) into Eq. (33), the equations can be written in matrix
form:

�1 �1 0 1 1 1 0 0

F 1 F2 0 G
ð1Þ
0 G

ð1Þ
1 G

ð1Þ
2 0 0

F 1 F2 0 G
ð2Þ
0 G

ð2Þ
1 G

ð2Þ
2 0 0

F1h2 F 2h2 �2 0 0 0 2 0

F1h1 F 2h1 2 0 0 0 0 �2

0 0 h 0 0 0 h1 h2

�k1F1 �k2F 2 0 u0 u1 u2 b �b

g1 g2 0 n0 n1 n2 0 0

2
666666666666664

3
777777777777775

ar

br

cr

at

bð1Þt

bð2Þt

c
ð1Þ
t

c
ð2Þ
t

2
666666666666664

3
777777777777775

¼

1 1

F1 F2

F1 F2

F1h2 F2h2

F1h1 F2h1

0 0

k1F1 k2F2

g1 g2

2
666666666666664

3
777777777777775

a

b

� �
, (34)

where uj ¼ k̂jðG
ð1Þ
j ðh1=hÞ3 þ G

ð2Þ
j ðh2=hÞ3Þ, nj ¼ h1ðik̂j þ G

ð1Þ
j Þ þ h2ðik̂j þ G

ð2Þ
j Þ (j ¼ 0,1,2). The reflected and

transmitted waves are related to those of incident wave via the following relation:

½ar; br; cr�
T ¼ R3�2½a; b�

T, (35a)

½at; b
ð1Þ
t ; b

ð2Þ
t ; c

ð1Þ
t ; c

ð2Þ
t �

T ¼ T5�2½a; b�
T, (35b)

where R3� 2 and T5� 2 denote reflection and transmission matrices, respectively. For fully contacted
delaminated surfaces, the transmission matrix contains three coupled flexural modes and two extensional
modes in two sub-beams, respectively. The constant pressure distribution p from Eq. (27a) or (27c) indicates
the pressure reverses its sign over the delaminated region, implying that the delaminated surfaces may be
partially open or closed.

4. Power reflection and transmission

The wave continuously carries energy as it propagates, the rate of energy transport into one end of a cross-
section of the beam being, on average, equal to the rate out of the other end of the cross-section if no energy
dissipation is involved. This speed of transport, or power flow, is given by the rate of work of internal forces
and moments acting on a beam cross-section. A useful representation of the intensity of wave can be
represented by an average of power P over time. Over a period t0, the time-averaged power flow /PS per unit
beam width in Timoshenko beam is given by

Ph i ¼ �
1

t0

Z t0

0

ðV _wþM _cþN _uÞdt, (36)

where t0 ¼ 2p/o. Both incident and reflected waves exist in the un-delaminated region. Since only flexural
wave is excited at the far field. The third term of Eq. (36) associated with extensional wave vanishes.

Substituting Eqs. (20a) and (20b) together with the force–displacement relations Eq. (8) into Eq. (36), the
time-averaged power flow of the incident wave over a cycle can be written as

Pih i ¼ l1jaj2 þ l2jbj2Hðo� ocÞ, (37)

where lm ¼
1
2
o½k2A55km þD11km Fmj j

2 þ k2A55 ImðF mÞ�; m ¼ 1; 2. The Heaviside function H used signifies
that the term associated with evanescent wave does not carry energy when oooc. In this case, only the first
term of Eq. (37) remains.

For the reflected wave in un-delaminated region, the total power flow of reflected wave can be written as
follows:

Prh i ¼ l1 arj j
2 þ l2 brj j

2Hðo� ocÞ þ le crj j
2, (38)

where le ¼
1
2okeA11.

For a semi-infinite delamination, the incident waves transmit waves into delaminated regions. In the open
delaminated surfaces, each sub-beam can be considered as a separate single beam with its own stiffness and
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thickness. Thus, power flow of transmitted waves in the open delaminated region can be expressed as

Pth i
ðnÞ
open ¼ lðnÞ1 a

ðnÞ
t

��� ���2 þ lðnÞ2 bðnÞt

�� ��2Hðo� oðnÞc Þ þ lðnÞe c
ðnÞ
t

��� ���2 ðn ¼ 1; 2Þ, (39)

where lðnÞm ¼
1
2
o½k2AðnÞ55 kðnÞm þD

ðnÞ
11 kðnÞm F ðnÞm

�� ��2 þ k2AðnÞ55 ImðF
ðnÞ
m Þ�,l

ðnÞ
e ¼

1
2
okeA

ðnÞ
11 , m, n ¼ 1,2.

The superscripts (1) and (2) denote the two separated sub-beams in the open delaminated region.
In the closed delaminated region, two sub-beams are constrained with identical transverse displacement.

Similarly the power flow of transmitted wave in the closed delaminated region can be written as follows:

Pth i
ðnÞ
closed ¼ ZðnÞ0 atj j

2 þ ZðnÞ1 bð1Þt

�� ��2Hðo� oð1Þc Þ þ ZðnÞ2 bð2Þt

�� ��2Hðo� oð2Þc Þ þ lðnÞe c
ðnÞ
t

��� ���2, (40)

where ZðnÞj ¼
1
2
o½k2AðnÞ55 k̂j þ k̂jD

ðnÞ
11 G

ðnÞ
j

��� ���2 þ k2A
ðnÞ
55 Im ðG

ðnÞ
j Þ� (n ¼ 1,2, j ¼ 0,1,2).

The superscripts (1) and (2) denote the two coupled sub-beams in the closed delaminated region.
The ratios of the reflected and transmitted power (energy) to the incident energy are defined as

R ¼
Prh i

Pih i
; T ðnÞopen ¼

Pth i
ðnÞ
open

Pih i
; T

ðnÞ
closed ¼

Pth i
ðnÞ
closed

Pih i
ðn ¼ 1; 2Þ. (41)

The energy conservation implies

Rþ
X2
n¼1

T ðnÞ ¼ 1. (42)

For transmitted waves in the delaminated region, power (energy) ratios associated with each wave mode can
be described as:

TA0
open ¼

lð1Þ1 a
ð1Þ
t

��� ���2 þ lð2Þ1 a
ð2Þ
t

��� ���2
Pth i
ð1Þ
open þ Pth i

ð2Þ
open

; TA1
open ¼

lð1Þ2 bð1Þt

�� ��2 þ lð2Þ2 bð2Þt

�� ��2
Pth i
ð1Þ
open þ Pth i

ð2Þ
open

; Ts0
open ¼

lð1Þe c
ð1Þ
t

��� ���2 þ lð2Þe c
ð2Þ
t

��� ���2
Pth i
ð1Þ
open þ Pth i

ð2Þ
open

,

T
A0

closed ¼
Zð1Þ0 þ Zð2Þ0
� 	

atj j
2

Pth i
ð1Þ
closed þ Pth i

ð2Þ
closed

; T
A1

closed ¼
ðZð1Þ1 þ Zð2Þ1 Þ bð1Þt

�� ��2 þ ðZð1Þ2 þ Zð2Þ2 Þ bð2Þt

�� ��2
Pth i
ð1Þ
closed þ Pth i

ð2Þ
closed

,

T
s0
closed ¼

lð1Þe c
ð1Þ
t

��� ���2 þ lð2Þe c
ð2Þ
t

��� ���2
Pth i
ð1Þ
closed þ Pth i

ð2Þ
closed

, (43)

where the superscripts A0, A1, S0 denote the term related to different propagating modes.

5. Numerical results

A unidirectional composite beam made of IM7/5250-4 graphite/epoxy material is chosen as an example in
this section. The fibers are aligned with the beam axis and beam cross-section is rectangular. The material
properties of the composite are shown in Table 1.

For the composite beam where the delaminated surfaces are modeled to be open, the group velocities of sub-
beams and their own cut-off frequencies can be readily determined by Eqs. (14)–(16) using pertaining
geometries in each sub-beam. In contrast, the composite beam where delaminated surfaces are completely
closed, the group velocities of closed delaminated regions given by Eq. (30) are compared with those from the
Table 1

Material properties of IM7/5250-4 composite

EL (GPa) ET (GPa) GLT (Gpa) GTZ (GPa) nLT nTZ r (kg/m3)

168 9.31 5.17 3.45 0.33 0.4 1.61
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un-delaminated given by Eq. (13), shown in Fig. 3. In this figure, the delamination is located at h1/h ¼ 0.4. The
superscripts 0 and d in the figure denote the un-delaminated and delaminated region of the beam, respectively.
It can be concluded from Fig. 3(a) that the group velocity curves of two A0 modes are very close in the whole
frequency domain. However, there is a slightly lower group velocities of A0 mode in the closed delaminated
region compared with those in the un-delaminated region when the frequencies are below 0.3oc, which can be
seen in Fig. 3(b). It is mainly due to the reduction of the bending stiffness in the delaminated region.
In addition, both A0 modes tend to reach transverse wave velocity multiplied by the shear correction factor
(kcs) as the frequency approaches infinity. Additional two flexural modes in the closed delaminated region
associated with each sub-beam region appear. Their cut-off frequencies are greater than that in the un-
delaminated region because of the lower thickness values. As the frequency becomes higher, the group velocity
curves of two modes reach the same values (cl) in the un-delaminated region.

The magnitudes and phases of reflection and transmission coefficients versus dimensionless frequency are
shown in Figs. 4–9 for a given delaminated position h1/h ¼ 0.4. The left vertical axes denote the magnitudes
while right vertical axes denotes the phases. Both open and closed delaminations are considered in these
figures. Sub-figures (a) and (b) describes the modes transmitted and converted from the first and second
flexural incident waves, respectively.
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It is clearly seen by comparing Figs. 4 and 5 that, as expected, the reflection coefficients are very insensitive
to the delaminated surface conditions. The reflection magnitude (reflectivity) monotonically deceases as
frequencies increase except |R12|, where the reflection starts to increase and then decrease after o/oc ¼ 0.6. In
the lower frequency domain, where the frequency is below the cut-off frequency in the un-delaminated region,
although the reflection coefficient |R21| has larger magnitude, the wave is non-propagating evanescent type
and decays exponentially from the delamination tip. When the excitation source contains the second
propagating mode, |R12| and |R22| decrease rapidly near oc. The phases of flexural reflection coefficients
depend strongly on the frequency when oooc

(1). The reflection coefficients |R31| and |R32| (not shown in the
figures) are virtually zero and phases are shifted by 901, implying that there is almost no extensional wave
reflected from the two flexural modes. The induced extensional waves arise primarily from the self-
equilibrating forces to ensure equilibrium between the sub-beams.

Since the two extreme delamination surface conditions involve different formulation and resulting different
displacement fields, the transmission coefficients may vary between open and closed delaminations, which are
shown in Figs. 6–9. Figs. 6 and 7 give the transmission coefficients of two sub-beams for open delamination
surfaces, respectively; while Figs. 8 and 9 present the transmission coefficients of flexural and extensional
modes under closed delamination surfaces, respectively. Comparing the curves among Figs. 6–9(a),
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the coefficients strongly depend on the frequency in the frequency oooc; beyond this frequency, there is
almost no mode conversion, i.e., |Tn1|E0 (n ¼ 2–5); all the first flexural wave energy directly transmits from
the un-delaminated region into the delaminated region, i.e., |T11|E1. Comparatively, the coefficients
converted from the second mode are much higher than the one converted from the first mode when oooc, but
these modes involve no power transmission since the evanescent wave cannot transport the energy. And these
coefficients vary rapidly with frequencies, especially at the cut-off frequency.

The coefficients of flexural modes converted from the second mode, such as |T12| and |T22| in Figs. 6(b) and
7(b), |T12|, |T22| and |T32| in Fig. 8(b), are significantly reduced when the frequency is beyond the cut-off
frequency (o4oc). It should be noticed that the coefficients of extensional mode converted from the second
mode, such as |T32| in Figs. 6(b) and 7(b), |T42|, and |T52| in Fig. 9(b), increase with the varying frequency.
This can be explained by the fact that the second flexural mode c(x, t) introduces the rotation of the cross-
section. This rotation induces large longitudinal motion in the sub-beams to maintain the rotation
compatibility at the junction of the delamination tip.

Using the power flow expression in Eq. (41), the reflected and transmitted energies for both open and closed
delamination surfaces are shown in Fig. 10. Numerical results based on the formulation show that the energy
is conserved for all frequencies. In this study, two types of incident waves are chosen: b ¼ 0 (the first flexural
wave mode only) and b/a ¼ 1 (two incident flexural waves have identical magnitudes). When o4oc, the two
cases (open and closed delamination) have very close results of the energy transmission and reflection ratios
are almost independent of the delamination surface conditions. A notable difference in the energy
transmission ratios occur in the lower frequency domain for these two delamination surface conditions.
Moreover, there is a marked difference between Fig. 10(a) and (b) when o4oc, because the second flexural
mode is involved. And there is a high energy reflection when the frequency is just beyond the cut-off frequency
oc shown in Fig. 10(b). This is because in this frequency domain the wave transmitting into the two sub-beams
are evanescent, only one propagating mode transmitted into the delamination region. Thus all the energy of
the second flexural mode is reflected back into the un-delaminated region.

The waves transmitted in the delamination region from the incident flexural waves experience mode
conversion of the extensional wave and the flexural wave varying with the frequency can be obtained. Fig. 11
shows the transmitted energy ratios among various modes for different excitation frequencies. It can be
concluded that the A0 mode is converted most of the energy when the frequency is lower than the cut-off
frequency in the un-delaminated region. While the frequency is beyond oc and b ¼ 0 (see Fig. 11(a)), which
means there is no second incident mode, A0 mode transmitted almost all of the energy, thus there is no mode
conversion. When o4oc and b/a ¼ 1 (see Fig. 11(b)), portion of the transmitted energy is shared by the
extensional mode. This suggests that the extensional motion in the two sub-beams is mostly converted from
0 1 2 3 4
0

0.2

0.4

0.6

0.8

1.0

R

T (1)

T (2)

�c �c �c
(2) (1) 

�c �c �c
(2) (1) 

R
ef

le
ct

ed
 a

nd
 tr

an
sm

itt
ed

 e
ne

rg
y 

ra
tio

0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

ed
 a

nd
 tr

an
sm

itt
ed

 e
ne

rg
y 

ra
tio

0 1 2 3 4

R

T (1)

T (2)

T (1)

T (2)

R

�/�c�/�c

Fig. 10. Reflected energy ratio (R) and transmitted energy ratios (T(i), for i ¼ 1,2) (h1/h ¼ 0.4) (solid line: open delamination; dotted line:

closed delamination) (a) b ¼ 0; and (b) b/a ¼ 1.



ARTICLE IN PRESS

T
ra

ns
m

itt
ed

 e
ne

rg
y 

ra
tio

0 1 2 3 4
0

A0

A0
S0

S0

A1

 

T
ra

ns
m

itt
ed

 e
ne

rg
y 

ra
tio

 

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1.0
�c �c �c

A0

S0

(2) 

�/�c �/�c

1.0

0.8

0.6

0.4

0.2

(1) 
 �c �c

(2) (2) 

Fig. 11. Transmitted energy ratios among various wave modes (A0, S0, A1) at h1/h ¼ 0.4 (solid line: open delamination; dotted line: closed

delamination): (a) b ¼ 0 and (b) b/a ¼ 1.

T
ra

ns
m

itt
ed

 e
ne

rg
y 

ra
tio

 

0 0.4 0.5
0

R
ef

le
ct

ed
 e

ne
rg

y 
ra

tio
 

0 0.4

0

0.002

0.004

0.006

0.008

0.010

0.012

Delamination position  h1/h Delamination position h1/h

1.0

0.8

0.6

0.4

0.2

0.50.30.20.1 0.1 0.2 0.3

Fig. 12. Reflected energy ratio (R) and transmitted energy ratios (T(i), for i ¼ 1,2) versus the delamination position (o ¼ 0.1oc):

(a) reflected energy ratio and (b) transmitted energy ratio (solid line: open delamination; dotted line: closed delamination).

W.-C. Yuan et al. / Journal of Sound and Vibration 313 (2008) 676–695690
c(x,t), rotation of the cross-section of the beam. The other flexural modes A1 is present when the frequency is
beyond the cut-off frequency of the sub-beam. In the all frequency domain, the transmitted energy of wave
modes is insensitive to the delamination surface conditions.

Fig. 12 shows the effect of various delaminated positions in the thickness direction on the reflected and
transmitted energy ratios at a given frequency o ¼ 0.1oc. At this frequency, the transmitted wave
only contains S0 and A0 modes, and the energy ratios for extensional wave versus delamination
position are shown in Fig. 13. The reflected energy ratios of two cases are slightly different when h1/h is
below 0.4, while matching well when h1/h is close to 0.5. It is because the contact pressure will be larger when
the delamination being more asymmetrical. Especially, in the case of symmetric delamination, i.e., h1/h ¼ 0.5,
there is no contact pressure, and the results of two cases are identical. This reason is also true for the energy
transmission ratios. Generally, the reflected energy increases as the delamination position is closer to the
middle plane, and reaches maximum value at h1/h ¼ 0.5. This can be simply explained by the reduction of
the bending stiffness in the delaminated region, the maximum occurring at h1/h ¼ 0.5. The energy ratio of the
transmitted extensional mode increases monotonically with increase of h1/h, and reach the maximum value at
h1/h ¼ 0.5.
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6. Comparison with results from finite element method

In order to verify the accuracy of the analytical method of power reflection and transmission in a semi-
infinite delamination using the two extreme delaminated surface conditions, a finite element analysis using
MSC software is conducted to model the wave propagation in the delaminated beam. The delaminated
surfaces are modeled by gap elements that impose normal forces to avoid interpenetration on the portion of
the delamination surfaces during the wave propagation. The true interface condition would probably involve
frictional slippage and dissipation. Fig. 14 shows the schematic of the delaminated cantilever beam with the
geometry: l ¼ 150mm, L ¼ 550mm, and h ¼ 1.8mm. Sensor S1 located at middle plane of the un-delaminated
region is used to measure the incident wave and reflected wave. Sensors S2 and S3 at the middle plane of two
sub-beams are used to measure the transmitted wave, respectively. It should be noticed that S2 and S3 contain
both transverse and longitudinal displacements at the middle plane, while S1 only contains the transverse
displacement. The element is chosen by a plane strain 4-node rectangular element. Note that the size of each
element depends on the frequency of the guided wave. It must be satisfied that there are more than 8 elements
in a wavelength to minimize the numerical distortion.

Sections 3 and 4 discussed the (power) reflection and transmission incident upon the delamination of
harmonic flexural waves of a single frequency. In practice it is unlikely to generate a single frequency wave in
limited time duration, in this section a narrowband incident wave is excited to examine the interaction of flexural
waves with delamination using finite element method. Thus, a Fourier integral is needed to calculate the wave
response. The incident flexural wave is generated at the left of the cantilever beam by exciting a concentrated
moment at the middle node of the left end of the beam, which can be mathematically described by

MðtÞ ¼M0½HðtÞ �Hðt� 5=f 0Þ� 1� cos
2pf 0t

5

� �
sin 2pf 0t. (44)
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This wave packet denotes a five-peaked narrowband signal modulated by a Hanning window, which the wave
energy is concentrated around the central frequency f0. The excitation signal is chosen, such that the central
frequency is 50kHz (approximately 0.1 of the cut-off frequency fc). This signal has no significant energy above
the cut-off frequency of the A1 mode, thus only first the flexural mode is excited. The wave transmitted
displacement will be firstly generated at the left end of the beam, described as a0(t). In this linear transient wave
analysis, the wave propagates at the same frequency content of the applied excitation signal. The frequency
spectrum of the transient wave displacement can be obtained using Fourier transform and can be written as

A0ðoÞ ¼
Z þ1
�1

a0ðtÞ e
�iot dt. (45)

The magnitudes of wave packets received by three sensors in frequency domain could be obtained by
multiplying the reflection and transmission coefficients on incident wave packet. Meanwhile, there is phase-shift
caused by the wave propagation distance shown in Fig. 14. This would be also multiplied on the incident wave.
Then the signal received by each sensor is the superposition of the incident and scattered wave including
transmission and reflection (if any) waves:

AS1
ðoÞ ¼ A0ðoÞ eik1l þ R11A0ðoÞ e3ik1l , (46a)

AS2
ðoÞ ¼ T

ð1Þ
11 A0ðoÞ e2ik1lþik

ð1Þ
1

l ; CS2
ðoÞ ¼ T

ð1Þ
31 A0ðoÞ e2ik1lþikel , (46b)

AS3
ðoÞ ¼ T

ð2Þ
11 A0ðoÞ e2ik1lþik

ð2Þ
1

l ; CS3
ðoÞ ¼ T

ð2Þ
31 A0ðoÞ e2ik1lþikel , (46c)

where AS1
ðoÞ, AS2

ðoÞ and AS3
ðoÞ denote the flexural signals received by S1, S2, and S3, respectively, and CS2

ðoÞ
and CS3

ðoÞ represent the extensional signals received, respectively, by S2 and S3. For example, AS1
ðoÞ consists

of incident wave and reflected wave. The incident wave propagating to S1 experiences a phase shift by a distance
l and the reflected wave by 3l. Since both waves propagate in the un-delaminated region, a single wavenumber k1
is used.

Then the signal in the time domain can be symbolically represented by using its inverse Fourier transform
shown as follows:

aðtÞ ¼
1

2p

Z 1
�1

AðoÞ eiot do, (47)

where A(o) represents AS1
ðoÞ, AS2

ðoÞ, AS3
ðoÞ, CS2

ðoÞ, and CS3
ðoÞ for brevity, a(t) is the signal in time domain,

respectively. The numerical results of symmetric delamination case, leading to the maximum reduction of
bending stiffness, are presented for this example. The signals received from the finite element method nodes
compared with analytical results (open delamination) are shown in Fig. 16. The analytical results chosen from
open delamination case have a good agreement with the finite element method. As a result of symmetric status,
signal received by S3 is the same as S2, so it is only shown the signals received by S1 and S2 for brevity.

In order to make a convenient comparison, the signals are non-dimensionalized according to incident wave.
Fig. 15(a) denotes the incident wave packet passing by associated with reflected wave packet. A good
agreement can be seen between finite element method model and theory and the magnitudes of the reflected
wave are both about 0.1. The transmitted wave contains both flexural wave and extensional wave in S2 mode,
so Fig. 15(b) and (c) shows both of the signals. The signals obtained by two methods match well. Moreover,
the extensional wave reaches at position S2 earlier than the flexural wave. This is because there is a length of
distance l to be propagated by the transmitted wave, and the extensional wave speed is about six times of the
flexural wave according the material in this paper. There are additional wave packets in transmitted
extensional waves of finite element method results in Fig. 15(c), which is the extensional wave reflected from
the right boundary of the cantilever beam.

For the dispersive phenomenon, the whole power flow of the analytical method is still needed to consider all
the components in the whole frequency domain. Thus, the power flow can be written as

Ph i ¼
1

4p2

Z 1
�1

lðoÞ AðoÞ
�� ��2 do, (48)
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where l(o) can be considered as the coefficient of the power flow dependent on frequency, while A(o) is the
transverse displacement magnitude of the transient wave packet by spectral description. The reflected energy
ratio and transmitted energy ratio for each mode could be calculated according to Section 4 together with the
integral in the frequency domain as Eq. (48).

As the finite element method model is based on the elastic beam theory, the expression of power flow is
different from Timoshenko theory given by Eq. (36), and it can be written as follows:

Ph i ¼ �
1

t0

Z t0

0

Z h=2

�h=2
ðsx _uþ txz _wÞdz dt, (49)

where the stresses sx, txz and displacements u, w are functions of coordinate x, z and time t. In order to
calculate the power flow through the section y– z plane, the value of x is chosen as a constant x0 arbitrarily. As
the plane strain problem is discussed in this paper, these variables can be obtained at the nodes of the finite
element method model with different coordinate z. Substituting the following Fourier transform of these
variables, the power flow can be rewritten as

Ph i ¼ �
1

8p2

Z h=2

�h=2

Z 1
�1

io½ð ~sx ~u� ~sx ~uÞ þ ð~txz ~w� ~txz ~wÞ�dodz, (50)
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where ~sx, ~u, ~txz and ~w denote the complex conjugates of ~sx, ~u, ~txz and ~w. As the finite element method involves
the discontinuity in the coordinate z, the integration in the thickness direction can be obtained by summation
of the values in each node.

According to Eqs. (48) and (50), the reflected energy ratio of both analytical method (open and closed
delamination) and the finite element method can be obtained by varying the position of the delamination,
reflected energy ratio and transmitted energy ratio for extensional wave S0 power are monotonically increasing
with the depth of the delamination as shown in Fig. 16.

It can be concluded from the figures that the results using the finite element method are between two
extreme delaminated surface conditions cases using analytical results, and are closer to the open delamination
in both the reflected energy and the transmitted energy ratio for extensional wave S0 power. Although the
open delamination leads to overlapping between two surfaces in the analytical model, it provides better
prediction than that of the delaminated surface being completely closed. The maximum reflected energy and
maximum transmitted energy of extensional wave occur when the delamination occurs at the midplane, where
the maximum shear stress for the A0 mode is largest.
7. Conclusions

Wave reflection and transmission in composite beams containing a semi-infinite delamination is presented
using Timoshenko theory for two extreme delaminated surface conditions: open delamination and closed
delamination, respectively. The flexural wave reflection and transmission coefficients depend strongly on the
frequency of the incident flexural waves as well as the position of the delamination. And they also reveal the
mode conversion among two flexural wave modes and one extensional wave mode. The power distribution of
the transmitted wave among modes provides a physical significance of mode conversion varying with the
frequency. In addition, numerical results show the conservation of power transport in the whole frequency
domain, which means the energy of incident wave transfers entirely to the energy of reflection wave and
transmission wave. This is also used to verify the validity of the analytical method. The analytical results also
give a good agreement with the simulation results from finite element analysis, which provide an efficient
method of localizing the delamination in the thickness direction.
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